LS5 – Die Auslegung des Flügels

24.03.2016

Vorgeschichte

Angefangen hat es mit einem Buch. Also, so richtig angefangen, ämel. Der Eqip Verlag hat im 2015 das Buch LS-Segelflugzeuge – von der LS1 bis zur LS11 heraus gegeben. Natürlich habe ich mir das vorbestellt und als es dann geliefert wurde, habe ich es mit Wonne durchgeblättert und rein geschmökert. Beim Schmökern blieb es nicht lange. Wer sich für Geschichte und Segelflug interessiert, muss es als gelungene Kombination geradezu verschlingen. So ist es auch mir ergangen. So spannend das Buch und die darin gezeichnete Geschichte ist, so tragisch beginnt sich das Schicksal bereits im ersten Drittel abzuzeichnen. Schon zu Beginn der 80er Jahre sind die Vorzeichen des Untergangs im Buch erkennbar. Das etwas zu kleine und zu wenig breit aufgestellte Unternehmen setzt (zu) stark auf kurzfristige und eigen interessierte Projekte.

Eines dieser eigeninteressierten Projekte war die LS5. Schon lange war es der Traum Schneiders einen Flieger der offenen Klasse zu bauen und zu fliegen. Wolf Lemke, der Ingenieur hinter Schneiders Flieger, war natürlich von der Aussicht einen solchen Flieger zu konstruieren nicht minder angetan. Leider wurden sie dabei von der wirtschaftlichen Notwendigkeit davon abgehalten, durch die fehlenden Ingenieursresourcen verhindert und schliesslich von der Zeit überholt. Schlussendlich entstand die LS5 als Einzelstück in privater Initiative von Wolf Lemke und Klaus Mies ausserhalb der Firma Rolladen Schneider. Wer mehr wissen will, dem empfehle ich das erwähnte Buch wärmstens.

Auf jeden Fall hat es mir die LS5 spätestens beim Lesen dieses Buches angetan. Schon einige Jahre vorher begann mir die charakteristische Rumpfform der LS Flieger zu gefallen. Aussergewöhnlich für den deutschen Segelflugbau haben nämlich die Lemke-Schneider Flieger von der LS1 bis zur LS10 ihre unverkennbare Rumpfform fast unverändert behalten. Schempp-Hirth weist hier bereits eine viel deutlichere Evolution auf und Alexander Schleicher hat eine erstaunliche Entwicklung von der ASW 15 über die 19/20 zur ASW 24 und ASH 26 durchgemacht, wobei die letzteren nun bis heute formgebend der Reihe vorstehen. Aber ich schweife wieder in die Segefluggeschichte ab.

Die lang gestreckte Eleganz der LS5 zusammen mit dieser historischen Rumpfform haben es mir angetan. So ein Einzelstück müsste man reproduzieren, wenn auch im geeigneten Modellbau-Massstab. Mein – inzwischen beinahe “Lieblings-” – Rumpfhersteller, Steinhardt/Wanitschek hat einen LS3 Rumpf im Massstab 1:4 im Angebot, der sogar ohne Flächenanformungen daher kommt. Das wären doch ideale Voraussetzungen um eine LS5 zu realisieren. Das Original basiert nämlich ebenfalls auf einem LS3 Rumpf mit vergrössertem Seitenleitwerk und einem angepassten Rumpf-Flächenübergang. In diesem Sinne würde das Modell nicht nur “Scale” gebaut, sondern auch “Scale” aufgebaut. Yay! Das wär doch was!

Die Grundauslegung

Nun gut. Gemäss Webseite von Steinhardt sei die Wanitschek LS3 in 1:4 gehalten.- Das würde also bei 22.78 m Spannweite des Originals  rund 5.7m Spannweite beim Modell geben; Bei 1.75m Rumpflänge. Ob das klappen kann..? Also kein alltägliches Projekt. Spannend!

Der Rumpf wurde bestellt und prompt geliefert (wieder ein Dankeschön an Steinhardt, stellvertretend für alle zuverlässigen Modellbauhersteller, von denen es leider nicht all zu viele gibt). Beim Ausmessen und Übertragen ins CAD durch “Orthofotografie” kam ein Massstab von 1:3.94 heraus, was zu einer Spannweite von  5.78m führt. Wow. Das sind 1.8m mehr als mein bisher grösstes Modell. Und das bei gleicher Rumpflänge. Vielleicht sagen wir einfach 90cm pro Fügelhälfte, dann ist es etwas weniger ehrfurchtseinflössend.

Wie müsste so ein grosses Modell ausgelegt sein? Aufgrund der Grösse würde ich ziemlich sicher vornehmlich in der Ebene fliegen; Oder allenfalls bei gemütlichen Situationen in den Bergen. Bei Sturm oder landetechnisch schwierigen Bedingungen hätte ich genug andere Modelle, die besser passen: Meine Pik 20, elektrisch und gerade im Bau, die Caldera S oder auch die gute “alte” ASW 24, wenns den Scale sein soll. Meine LS5 soll, wie das Vorbild, majestätisch im Aufwind kreisen und allenfalls mal im gestreckten Galopp zum nächsten Bart stürmen. Diesen Flieger würde ich als Thermikvogel mit akzeptablen Schnellflugeigenschaften haben wollen.

Die Profilierung

Vom Gefühl her sollten Profile mit einer Wölbung von 2.5 bis 3 % dazu passen. HQW lag als erster Griff nahe, weil es da so schöne komplette Dicken- und Wölbungsreihen gibt. Erste Modellrechnungen mit xflr5 ergaben mit dem HQW 2.5 gute Ergebnisse. Allerdings überzeugte mich das Grosssegler-Allround-Profil beim Einsatz der Wölbklappen nicht so recht. Der Gewinn bei positiver und negativer Verwölbung erschien mir knapp. Nicht wirklich schnell und widerstandsarm im Schnellflug, und auch thermisch ein Kompromiss. Weder Fisch noch Vogel. Obwohl ich 3% als eher (zu) stark gewölbt einschätzte, habe ich auch einen HQW 3 Flügel modelliert, der den Schwerpunkt ohne Verwölbung klar in Richtung Thermik verschob. Beim HQW 3 konnte ich in der Simulation eine viel deutlichere Wirkung der negativen Verwölbung ausmachen und auch bei positiv gesetzten Wölbklappen noch einen guten Leistungsgewinn im Langsamflug. Insgesamt verschoben sich die Eigenschaften mit dem 3 prozentigen Profil klar in Richtung des durchaus angestrebten Thermikfluges, jedoch bei praktisch gleichen Schnellflugeigenschaften. Damit wurde die Auslegung passender zu den Anforderungen und sogar breiter.

Die enorme Streckung der LS5 würde im Bereich des Aussenflügels, gerade beim angestrebten Langsamflug, zu sehr geringen Re-Zahlen führen. HQW Profile sind aber nicht eben bekannt für ihre unkritische Re-Zahl Stabilität. Zudem bin ich seit jeher der Meinung, dass sie etwas gar “grenzschichtoptimistisch” ausgelegt sind. Die grösste Dicke befindet sich recht weit hinten, was eine potentiell lange laminare Laufstrecke ermöglicht, aber auch für die gefürchteten laminaren Ablöseblasen sorgt. Ich habe für den Aussenflügel also angefangen an diesem Parameter, der Dickenrücklage, zu schrauben. Aus dem HQW3/10 mit einer Dickenrücklage von 33% habe ich das HQW3/10-m abgeleitet, mit einer Dickenrücklage von nunmehr 30%. Xfoil quittierte das sofort mit ein einer gemässigteren Polare. Die Charakteristik der HQ Profile bei tiefen Ca gute Widerstandswerte zu liefern, bei mittleren Ca unter laminaren Ablöseblasen zu leiden und dann bei höhren Ca nochmals eine scharfe, widerstandsarme “Spitze” zu produzieren, veränderte sich zu einer ausgewogeneren Polare. Fast über den gesamten Ca- oder Anstellwinkelbereich hatte das Profil geringere Widerstandswerte. Nur eben diese schmale Spitze im Bereich des besten Gleitens wurde etwas abgeflacht. Da ich nicht davon ausgehe im täglichen Flugbetrieb diesen schmalen Bereich wirklich genau zu treffen und zu erfliegen, war es eine leichte Entscheidung etwas theoretisch erreichbare Höchstleistung gegen eine breite, unkritische und praxistaugliche Hochleistung einzutauschen.

Zu meinem Erstaunen bewährte sich aber diese Modifikation nicht nur am Aussenflügel. Nein, der Tausch des originalen HQW Profils bis hin zur Wurzelrippe bewirkte eine erstaunliche Leistungssteigerung im gesamten Geschwindigkeitsbereich.

pik-KQ-m-vs-HQ

Wie in den folgenden Polaren für ein HQW 3.5/10 und 3/13 erkennbar ist, ergibt sich leistungsmässige Parität erste bei Re-Zahlen grösser als 200’000.

hqw-m hqw-m2

Die LS5 erreicht bei Auslegungsgeschwindigkeit die 200’000 knapp nicht:

re-dist-ls5

Die Profilwahl, hier etwas verkürzt dargestellt, war also mit einem modifizierten, “entschärften”, HQW der ~3er Reihe getroffen.

Aber all die Anderen?

Natürlich habe ich mich gefragt was all die “anderen” HQW-Verbauer tun. Nun, dazu gibt es zwei Dinge zu sagen: Ich interessiere mich für das was andere tun! Allerdings ist das für mich eine wertvolle Information und nicht einfach der Weisheit letzter Schluss. Ich glaube, es gibt da draussen durchaus viele “Mode(ll)profile” und, wie bei den Kleidern, genau so viele Modellflieger die jeden Mist in den Himmel loben würden, wenn er denn nur gerade “in” und modern ist. Wie sonst konnte ein Profil wie das E-205 den Ruf erlangen, den es Jahre lang inne hatte, und zum Teil heute noch geniesst. Ich traue mich durchaus selber zu denken und stecke im Gegenzug dafür auch gerne das Urteil eben jener “Anderen”,  und noch viel mehr jenes der gnadenlos ehrlichen Natur, ein. Ich bin gespannt, was ich an dieser Stelle lernen werde.

Zum Anderen ist sich auch Helmut Quabeck dieses Problems bewusst. Es ist also nicht so, dass ich der Erste wäre, der das Problem seiner Profile bei niedrigen bis mittleren Re-Zahlen gefunden hätte. Wer seine Bücher liest weiss, dass er für den gefährdeten Bereich des Flügels (Aussenflügel) zu Turbulatoren bei 50% Tiefe auf der Oberseite rät. Ich kann mir durchaus vorstellen, dass dies einwandfrei funktioniert. Allerdings wollte ich meinen Flieger nicht von Anfang an so auslegen, dass ich auf der am Boden so gut sichtbaren Oberseite einen ein oder zwei Meter langen Turbulator anbringen muss.

Nebenbei: Wer an dieser Stelle jetzt kritisch an die HQ/DS Profile denkt – und vor allem an die teilweise damit ausgelegten Nicht-Speedsegler – errät womöglich meine Bedenken.

Und der SA-Wunderstrak?

Ja, wer ab und zu im Segler-Teil des RC-Network liest, dem ist er sicher schon begegnet: Der SA 7036 Strak. Zunächst möchte ich in Erinnerung rufen: Es gibt ihn nicht, den Wunderstrak. Es gibt immer nur mehr oder weniger gut passende Auslegungen zu einem bestimmten Flugzeug mit seiner Geometrie und dem vorgesehenen Einsatzzweck. Der passend aufgedickte SA Strak hat wirklich sehr gute Eigenschaften, ergibt aber ein dynamischeres und weniger thermisch ausgelegtes Flugmodell. Ich will ‘s jetzt mit einem HQW versuchen, bin aber überzeugt, dass es sich je nach gewünschten Eigenschaften lohnen würde, diese Auslegung weiter zu verfolgen und zu verfeinern.

Der Flügel

Mit dem Entscheid für eine Basisprofilierung ist der Flügel natürlich noch nicht gebaut. Jetzt ging es darum aus einem Profil den Strak zu machen. Ziel: Gutmütigkeit im Bereich des Strömungsabrisses und Leistungsfähigkeit im Sinne der vorher definierten Grundauslegung.

Auf Grund der extremen Streckung des Modells (> 35) kann vor allem am Innenflügel nicht mit all zu dünnen Profilen hantiert werden. Auch aus “Scale-Gründen” wollte ich das nicht. 14% Dicke an der Wurzelrippe müssen es für eine vernünftige Statik mit passendem Gewicht sein; 15% wären vorbildtechnisch durchaus machbar und mir würd’s sogar gefallen einen so dicken Flügel zu bauen. Wie es sich zeigte, ist der Leistungsverlust der HQW 3 Profilierung aber bei mehr als 14% Dicke markant. Der Innenflügel wurde also mit 14% festgelegt.

Um ein günstiges Strömungsabrissverhalten am Aussenflügel zu erreichen, habe ich die Dicke des Profils auf 10% bei gleichzeitiger Erhöhung der Wölbung auf 3.5% festgelegt. Damit die Strömung tatsächlich später als am Innenflügel abreist, muss dazu jedoch der lokale Einstellwinkel verkleinert werden. Die Dicken innerhalb des Flügels habe ich so gestaltet, dass sowohl Oberseite als auch die Unterseite gerade verlaufen.

Für die definitive Auslegung fehlte jetzt also nur noch der Einstellwinkelverlauf entlang der Spannweite, auch bekannt als Schränkung. Dabei habe ich darauf geachtet, dass der lokale Ca über den ganzen Flügel mehr oder weniger konstant ist.

Der letzte Entwurf sieht folgenden Verlauf vor:

ls5-wingdata

Damit ergibt sich beim Auslegungs-CA ein mehr oder weniger ebener Verlauf des lokalen Ca über die gesamte Spannweite:

ls5-Cal0

Auch bei einem Anstellwinkel von -4.2° und 20m/s Fluggeschwindigkeit sieht es ähnlich aus:

ls5-Cal-4.2

Wölbklappen

Natürlich kriegt die LS5, wie das Original, über die ganze Spannweite Klappen. Wie im ersten Teil beschrieben, habe ich die grundsätzliche Wirksamkeit rechnerisch getestet. Grundlage sind über den ganzen Flügel 22% tiefe Klappen. Bei der Profilierung mit dem HQW 3 basierten Strak ergibt sich ein breiter Flugbereich. +4° für Thermik und -3° für “Speed” sollten recht gut passen. Grössere Wölbklappenausschläge erschienen mir nicht sinnvoll. Auch die Simulation zeigt da nur noch eine geringe Verschiebung des Arbeitspunktes bei merklicher Schmälerung des noch effizient fliegbaren Bereichs. Ich sitze nicht im Flugzeug und kann die Fluglage nur ungenau vom Boden aus kontrollieren, also entscheide ich mich für die robustere Auslegung.

ls5-plane-cl-cd ls6-plane-steig glide glide1

Vermutlich ist das noch nicht das Ende der Entwicklung – schliesslich dauert es noch ein Momentchen, bis ich mit dem Flügelbau beginne.

Die nächste Baustelle

Jetzt, wo ein Modell des Modellflügels einigermassen steht, wird die Auslegung des Leitwerks im Zusammenhang mit dem Flügel verfeinert. Wie gross soll die EWD werden? Reicht die Grösse des Leitwerks und wie stabil soll der Flieger werden? Über all das berichte ich ein späteres Mal :)

Tags: , , ,


LS5, der Anfang einer langen Geschichte

08.02.2016

Huii, er ist gekommen: Der Grundstein für das LS5 Projekt :) Ein Wanitschek LS3 Rumpf im Masstab 1:4. Die Geschichte wird wohl genau so lang wie “breit” ;)

5641454935702885-1974573349

Tags: ,