Dichtehöhe

25.07.2019

Ich bin wieder zurück von unserem diesjährigen Modellflugtrip. Dieses Mal ging es mit Topper in Richtung Norditalien. Aber ich will nicht weiter vorgreifen, ausser dass nach 20 Segelflugstunden der Kerosingehalt im Blut gefährlich abzusacken drohte.

Das aktuelle Wetter ist ja eigentlich Werkstattwetter. Die Hitze erlaubt es kaum länger als eine halbe Stunde ohne Kräuterbutter an der Sonne zu verbringen. Danach ist man bereit zum Verzehr. Also habe ich versucht die noch einigermassen “kühlen” Stunden bis Mittag auszunützen und habe mich heute morgen auf den Weg zum Flugfeld gemacht um dem Kerosinmangel einhalt zu gebieten.

Es flog wunderbar. Aber schon um elf Uhr war es um die 36° C und ich sorgte mich um die Leistungsfähigkeit des Piloten. Aber was ist eigentlich mit dem Triebwerk und dem Flieger los, an so einem Tag?

Hohe Lufttemperatur bedeutet ja nicht nur Kühlprobleme bei Mann, Frau und Material, sondern auch eine geringere Luftdichte (darum fliegt oder “schwimmt” ein Heissluftballon in der Atmosphäre) und damit verminderte Leistungfähigkeit der Triebwerke. Für eine luftatmende Verbrennungsmaschine wie ein Kolbenmotor, eine Düse oder ein Mensch sind dann pro Atemzug weniger Luftmoleküle da; Wie wenn man einen hohen Berg erklimmt. (Luft-) Dichtehöhe ist der Ausdruck aus der Fliegerei für die Leistungsrelevante “gefühlte” Höhe. Und die kann man berechnen.

Dichtehöhe

Die Dichtehöhe errechnet sich aus der tatsächlichen Flugplatzhöhe, korrigiert um die Abweichung des Luftdrucks (QNH) zum Standardluftdruck (1013 hPa) und um die Abweichung der Temperatur (OAT) zur Standardtemperatur auf dieser Höhe.

Die Ausgangslage:

  • Flugplatzhöhe MG Gossau: 440 m / 1460 ft
  • QNH Zürich: 10015 hPa
  • OAT Flugplatz: 36° C

Als erstes korrigieren wir die “gefühlte Höhe” um die Abweichung des aktuellen Luftdrucks vom Standardluftdruck. Das ergibt die so genannte Druckhöhe. Der Luftdruck nimmt mit zunehmender Höhe alle 27 Fuss um ein Hektopascal ab (Natürlich ist das stark vereinfacht und grundsätzlich falsch. Tatsächlich nimmt der Luftdruck mit zunehmender Höhe Logarithmisch ab. Aber für uns Flachlandindianer, die wir uns nur in den untersten Schichten der Troposphäre bewegen, reicht diese lineare Näherung.). Der aktuelle Luftdruck, das QNH von Zürich, liegt mit zwei Hektopascal Differenz nur leicht über dem Standarddruck. Die Luft ist also ein wenig dichter, als sie bei Standardbedingungen auf der Flugplatzhöhe wäre. Für einen Motor fühlt es sich an, als wäre der Flugplatz etwas tiefer gelegen.

Druckhöhe = Flugplatzhöhe + 27 ft/1 hPa * (1013 hPa – QNH)

Die Differenz zwischen QNH und dem Standarddruck ist zwei Hektopascal. Die Druckhöhe ist zwei mal 27 ft, also etwa 54 Fuss oder gut 15m Meter tiefer:

Druckhöhe = 1460 + 27 ft/1 hPa * (1013 hPa – 1015 hPa) = ~1400 ft = ~425 m

Als nächstes berechnen wir als Zwischenschritt die Standardtemperatur auf dem Flugplatz Gossau. Die Standardtemperatur auf Meereshöhe beträgt 15° C. Mit zunehmender Höhe rechnet man mit einer Temperaturabnahme um 2° C pro 1000 Fuss.

Standardtemperatur @ Gossau = 15° – 1460 ft * 2°/1000 ft = ~12° C

Die Outside Air Temperatur (OAT), in unserem Fall einfach die Temperatur auf dem Flugplatz, liegt 24° C über der Standardtemperatur. Und das macht etwas aus, wie wir sehen werden!

Nun können wir die Temperaturdifferenz kompensieren und damit die Dichtehöhe berechnen. Je höher die Lufttemperatur, desto geringer ist die die Luftdichte bei dem selben Luftdruck. Hohe Lufttemperatur macht also die Luft dünner. Ein Verbrennungsmotor kann pro Kolbenhub, pro Verdichterumdrehung oder pro Atemzug weniger Luftmoleküle ansaugen und verbrennen. Es fühlt sich für ihn an, als wäre er in einer grösseren Höhe als er tatsächlich ist. Und zwar um 120 Fuss für jedes Grad Celsius über der Standardtemperatur auf unserem Flugplatz. Die Höhendifferenz, die wir so erhalten, addieren wir zu unserer Druckhöhe und kriegen damit die Dichtehöhe:

Dichtehöhe= Druckhöhe + 120 ft/1 °C * (OAT – Standardtemperatur@Gossau)

Dichtehöhe= 1400ft + 120 ft/1 °C * (36°C – 12°C) = ~4300 ft = ~1400 m

24 mal 120 Fuss, das schenkt ein. Das sind fast 3000 Fuss, oder ein Kilometer Höhendifferenz! An diesem Morgen hat mein Jet also die selbe Leistung, als wäre er bei Standardbedingungen auf rund 1400 Metern. Das ist höher als die beiden (ehemaligen Militär-) Gebirgsflugplätze Münster und Ulrichen im Oberwallis (siehe Karte).

Und was bedeutet das jetzt für die Leistung?

Wenn wir uns das Leben einfach machen und annehmen, dass die Turbine bei diesen thermischen Bedingungen gleich arbeitet (gleiche Strömungsgeschwindigkeit, aber verringerter Massenstrom), dann können wir die Leistung beziehungsweise den Schub anhand der allgemeinen Gasgleichung abschätzen:

p * V = n * R * T

Etwas umgeformt zeigt sich, dass sich die Dichte proportional zum Luftdruck und umgekehrt proportional zur Lufttemperatur verhält:

ϱ ~ n/V = p / (R * T)

Da der Schub direkt proportional zum Massendurchsatz unserer Turbine ist, können wir damit einen Faktor bestimmen um wie viel unser Triebwerk weniger schiebt:

“Luftdichtefaktor” = (QFE / 1013 hPa)/((36° C + 273 K) / (15° C + 273 K)) = 0.88

Aufgrund dieser stark vereinfachten Rechnung können wir mit rund 12% weniger Schub rechnen.

Mit:

p
Druck
V
Volumen
n
Stoffmenge
R
allgemeine Gaskonstante
T
Temperatur (in Kelvin, über dem absoluten Nullpunkt)
ϱ
Dichte
QFE
Luftdruck auf Flugplatzhöhe (In Gossau heute 960 hPa)

 

 

Schlussendlich war es die der Leistungsfähigkeitwille des Piloten, welcher nach zweieinhalb Stunden niedergaren vor der Aussicht auf den aufziehenden Dampfkochtopf kapitulierte 😉

Tags: , ,